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The addition of noise to a system can sometimes improve its
ability to transfer information reliably. This phenomenon—
known as stochastic resonance—was originally proposed to
account for periodicity in the Earth’s ice ages', but has now
been shown to occur in many systems in physics and biology*™.
Recent experimental and theoretical work has shown that the
simplest system exhibiting ‘stochastic resonance’ consists of
nothing more than signal and noise with a threshold-triggered
device (when the signal plus noise exceeds the threshold, the
system responds momentarily, then relaxes to equilibrium to
await the next triggering event)*. Here we introduce a class of
non-dynamical and threshold-free systems that also exhibit sto-
chastic resonance. We present and analyse a general mathematical
model for such systems, in which a sequence of pulses is generated
randomly with a probability (per unit time) that depends expo-
nentially on an input. When this input is a sine-wave masked by
additive noise, we observe an increase in the output signal-to-
noise ratio as the level of noise increases. This result shows that
stochastic resonance can occur in a broad class of thermally driven
physico-chemical systems, such as semiconductor p—n junctions,
mesoscopic electronic devices and voltage-dependent ion
channels’, in which reaction rates are controlled by activation
barriers.

In contrast to threshold behaviour, where subthreshold forcing
does not generate any output signal, threshold-free systems are able
to respond to input signals of arbitrary small amplitude. We
consider here threshold-free systems whose output can be described
by a random train of identical pulses with the probability of pulse
generation exponentially depending on the input signal. In partic-
ular, we assume that the pulse generation rate is given by:

r(V(1)) = r(0) exp(V(1)) (e))

where r(0) is the ‘equilibrium rate’ of the pulse generation and V(¢)
is dimensionless voltage or some other external parameter. This
equation describes a broad variety of ‘kT-driven’ physico-chemical
systems in which reaction rates are controlled by activation barriers
whose heights are dependent on an external parameter. The classical
examples include thermionic emission (the Richardson equation®),
electron transfer across semiconductor p—n junctions’, and the
generalized Eyring’s rate theory'®—a foundation for kinetic phe-
nomena description in contemporary physical and biological
chemistry. Among modern examples are ion channels’ and meso-
scopic electronic devices''.

Figure 1 illustrates the model with two examples of the output
pulse train for V(#) equal to zero (on the left) and for V(¢) randomly
changing in time (on the right). It is seen that at zero input voltage
the output current, I(#), is represented by randomly arriving pulses.
The input voltage encodes its properties into the pulse train, so that
large positive deviations of the input voltage from zero substantially
increase the probability of pulse generation. As a mathematical
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Figure 1 A time-dependent Poisson process is introduced via the voltage
sensitivity of pulse generation rate. Randomly changing input voltage modulates
the pulse arrival rate of an undisturbed stochastic process (tracks on the left) so
that pulses start to group in time (tracks on the right). Large positive voltages
increase the pulse rate to a degree where pulse overiapping is probable, and
events with double (or multiple) amplitude appear in the output current.

object such a pulse train was introduced in 1955 by Cox who called it
“doubly stochastic Poisson process”'”. Following Cox, we do not
discuss here the origin of initial stochasticity that leads to the pulse
generation randomness—it may have different origins for different
systems described by our approach, including some kind of internal
fluctuation.

To facilitate subsequent treatment, we assume that V(¢) is the sum
of a slow zero-mean gaussian noise, V(t), and a slow small-
amplitude sine-wave signal, thus limiting ourselves to the adiabatic
small-signal regime:

V() = V(D) + Vs sinQx fs £) 2)

where the signal amplitude Vg < 1 and the signal frequency fs is
much smaller than all other characteristic frequencies in the model.

By analysing the statistical properties of such a pulse train we will
describe the following features of signal transduction in these
systems: (1) threshold-free response—the ability to transfer small
signals with a transduction coefficient independent of signal ampli-
tude; (2) noise-facilitated signal transduction—the property to
increase the output signal amplitude by addition of noise to the
system input; (3) noise-induced improvement in the output signal-
to-noise ratio—the existence of particular input noise levels that
optimize the output signal quality.

For a random train of identical pulses the statistical properties of
the process are entirely defined by the moments of pulse arrival. The
shape of the pulse gives only a multiplicative ‘form-factor’ impor-
tant only at high frequencies that are comparable to inverse pulse
time. To describe the signal transduction properties of our model we
use the standard language of power spectral density*”. At low
frequencies around the signal frequency f;, the power spectral
density for this time-dependent Poisson process' can be written
in the form:

S{f) = 2Q(V(1)) + 4Qr(0))’

w (3)
X L {exp(V(D) exp(V(t + 7)) cosm f7) dr

where Q is single pulse area, 7 is the time delay and symbol ()
implies averaging over the ensemble representing the stochastic
process. The first term here describes the frequency-independent
component of noise expected from an uncorrelated time-indepen-
dent train (Poisson wave) of pulses, the second one accounts for the
pulse rate modulation induced by the input signal and noise
(equations (1) and (2)).

For a small-amplitude signal and gaussian noise, the first term is
easily expressed through the noise second moment or the root-
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Figure 2 Output signal-to-noise ratio (SNR) can be improved by addition of the
input noise. Small-signal adiabatic theory predicts the existence of optimal noise
intensity corresponding to a maximum in SNR. The magnitude of the optimal input
noise is sensitive to the ‘equilibrium pulse rate’, r(0), and the noise corner
frequency, f..

mean-square fluctuation o:
2QXr(V(1))) = 2Q°r(0) exp(0*/2) 4

where 0, as all other voltages here, is dimensionless. To calculate the
second term, we use relations for the probability density of two-
dimensional normal distributions of X and Y (ref. 14) introducing
the random vector (X, Y) as X = V(¢), Y = V(t + 7). After some
calculations, using the condition V¢ < g, we obtain:

{exp(V(1)) exp(V(t + 7))} = exp(a°(1 + p(7))) (5)

For the band-limited ‘white’ noise with the corner frequency
f. = Qmr) "', the normalized autocorrelation can be written in
the form:

p(7) = exp( — /1) + (Vi/26”) cos27 f7) (6)
At f < f, equation (3) becomes:

+ (Qr(0)o)*

2
S(f) = 2Q'r(0) exp (%) i exp(a”)

)

® 2n—2 0 V 2
X z onl . + (Qr( 2) S) exp(02)5(f _fS)
. :

Here, the first term on the right-hand side accounts for the noise
expected from the time-independent train of pulses with the rate of
r(0) exp(0/2). The second term represents the external input
voltage noise, Vi(t), transduced to the output. It includes not
only a small-signal part of the noise transduction but also con-
tributions from the crosstalk between different spectral noise
components. Signal transduction at f = f¢ is described by the
term containing a delta-function. It shows that the power of the
output signal grows exponentially with o and is finite at zero input
noise. A d.c. component of the output is ignored.

The last two terms of equation (7) reflect the coding of the input
stimulus (signal plus noise) in the pulse train. If the ‘equilibrium
rate’ (0) were not disturbed at all, that is, if ¢ and Vs were zeros,
these terms would vanish and would not contribute to the system
output. The second term goes away also for the input noise with
negligible correlations—in this case o is held constant, but the noise
corner frequency is increased to an extent where f >> r(0)d”.

Output signal-to-noise ratio, SNR, is now easily obtained from
the left part of equation (7) as the ratio of its last term to the
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Figure 3 Signal transduction predicted by the model at zero input noise as a
function of input signal intensity (dashed line}) compared to those for threshold
systems from electronics® (solid line) and biology” (dotted line) shown in the
inset. The threshold-free character of the model is clearly seen. The points show
the gain ratio measured as described in ref. 7 with the parallel array of alamethicin
jon channels reconstituted in a planar lipid bilayer at 110 mV. The interrupted line is
calculated forkT/ne = 3.3mV.

first two:

V2r(0) exp (0_2)

SNR = 244 ) (8)
2+r(0)o2e L Z "

f. P 2/ 4 nln

where Af, stands for the unit-frequency window width of the
spectrum analyser that is to be used in measurements. It is seen
that, except for the trivial dependence on the input signal amplitude
(Vs) and the details of measurement technique (Af,), the SNR can
be controlled by the noise intensity (o), its frequency width ( f.),
and ‘equilibrium pulse rate’ (r(0)).

Figure 2 shows the signal-to-noise ratio at different values of
r(0)/f. as a function of input noise intensity. In the figure, the SNR is
normalized to its magnitude at ¢ = 0. It can be seen that external
input noise can improve the output signal quality. Noise intensity
corresponding to a maximum in the output SNR increases with f;
but decreases with 7(0). Interestingly, however good the initial
statistics (large r(0)), the output signal quality can be further
improved if (and only if) the bandwidth of input noise is high
enough for the condition f. > r(0) to hold.

It should be noted here that for small and slow signals the results
of our calculations are exact. The presented model is applicable to a
wide variety of systems with exponential statistics. In the case of
biological ion channels the exponential statistics are due to an
interaction between the part of channel molecule containing so
called ‘gating charges’ and the electric field applied across the
membrane in which this molecule is embedded. For such voltage-
dependent ion channels Q becomes the total charge transported
through a single channel during its conductive state, and all voltages
in the problem are now expressed in units of kT/ne, where #ne is an
effective gating charge of the channel’.

Figure 3 shows signal transduction predicted by our model
(dashed line) with experimental data obtained for voltage-
dependent ion channels (data points) and demonstrates its
threshold-free character. To highlight the qualitative difference,
the solid and dashed lines in Fig. 3 inset describe examples of two
threshold devices taken from electronics and biology: they demonstrate
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the output signal of a level-crossing detector (adapted from ref. 16
for the case of zero external noise) and a nerve cell as a function of
the input signal amplitude. The nerve cell is represented by the
‘Hodgkin-Huxley axon’ in the presence of electrical noise"” whose
magnitude determines the width of the threshold transition. It is
seen that at zero external noise, the threshold devices are silent at
small signals, whereas voltage-dependent ion channels transduce
them with a finite coefficient. O
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